Search results for "metabolite sensing"
showing 2 items of 2 documents
Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment?
2020
G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treat…
Small RNA‐binding protein RapZ mediates cell envelope precursor sensing and signaling in Escherichia coli
2019
Abstract The RNA‐binding protein RapZ cooperates with small RNAs (sRNAs) GlmY and GlmZ to regulate the glmS mRNA in Escherichia coli. Enzyme GlmS synthesizes glucosamine‐6‐phosphate (GlcN6P), initiating cell envelope biosynthesis. GlmZ activates glmS expression by base‐pairing. When GlcN6P is ample, GlmZ is bound by RapZ and degraded through ribonuclease recruitment. Upon GlcN6P depletion, the decoy sRNA GlmY accumulates through a previously unknown mechanism and sequesters RapZ, suppressing GlmZ decay. This circuit ensures GlcN6P homeostasis and thereby envelope integrity. In this work, we identify RapZ as GlcN6P receptor. GlcN6P‐free RapZ stimulates phosphorylation of the two‐component sy…